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Abstract

The context of this research is devoted to the construction of an equivalent acoustic impedance model for
a soundproofing scheme consisting of a three-dimensional porous medium inserted between two thin plates.
Part 1 of this paper presents the experiments performed and a probabilistic algebraic model of the wall
acoustic impedance constructed using the experimental data basis for the medium- and high-frequency
ranges. The probabilistic algebraic model is constructed by using the general mathematical properties of
wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency,
decreasing functions when frequency goes to infinity, behaviour when frequency goes to zero and so on).
The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis.
Finally, this probabilistic algebraic model summarizes all the experimental data bases and consequently can
be reused for other researches.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the medium- and high-frequency ranges, the modelling of a multilayer system containing porous
materials is very important for noise control in aircrafts, automobiles, buildings, etc. Difficulties occur
in modelling such multilayer systems and in validating them with experimental data bases. Many
works have already been published about experimental data bases concerning the acoustic
transmission through multilayer systems or concerning the surface impedance of multilayer systems
with a rigid wall [1-10]. Nevertheless, very little information exists concerning the experimental data
basis for the equivalent acoustic impedance of multilayer systems with porous media and for the
medium- and high-frequency ranges. Such experimental data bases are necessary to understand the
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physics of such systems and to validate analytical and numerical models in the medium- and high-
frequency ranges. The main objective of Part 1 of this paper is to present an experimental data basis
concerning the equivalent acoustic impedance of a multilayer system containing a porous medium and
to propose a probabilistic model which allows the experimental data basis to be synthesized and
consequently, to be reused by the community for other researches. In particular, this experimental
data bases will be used in Part 2 [11] of this paper which is devoted to the validation of an analytical
model of such a multilayer system for the medium- and high-frequency ranges. The experimental
multilayer system consists of a three-dimensional porous medium inserted between two thin plates. At
a given frequency, the equivalent acoustic impedance of such a multilayer system is the linear mapping
between the pressure field applied to one plate and the jump of the normal velocities to each plate.
Such an equivalent acoustic impedance can be introduced in the models allowing vibro-acoustic
predictions of complex mechanical systems. An experimental data basis has specifically been
constructed for this research [12] and corresponds to the experimental identification of the equivalent
acoustic impedance in the frequency band [100,1600] Hz, the medium and high ranges corresponding
to the frequency band [300,1600] Hz. Using this experimental data basis, a probabilistic algebraic
model of the equivalent acoustic impedance of the multilayer system is constructed. This probabilistic
model synthesizes all the experimental data bases through the use of a mean algebraic model and a
random fluctuation model [13,14]. The number of parameters of this model (correlation lengths) is
minimum. A good approximation of this experimental data basis is given by this model. Section 2
deals with the experiment. In Section 3, the construction of the basic algebraic model for the
equivalent acoustic impedance is developed. Section 4 is devoted to the properties of the equivalent
acoustic impedance which are deduced from the analysis of the experimental data basis. In Section 5,
one presents the estimation of the mean values of the basic algebraic model parameters using the
experimental data basis and finally, Section 6 deals with the construction of the random model.

2. Description of an equivalent acoustic impedance experiment

An experiment [12] was carried out in an anechoic room in order to measure the equivalent
acoustic impedance of a multilayer system consisting of a three-dimensional porous medium
inserted between two thin plates in aluminium, denoted as P; and P, (see Fig. 1). The length and
width of the multilayer system are 0.6 and 0.4 m respectively. This multilayer system is fixed in a
rigid baffle. The geometry and the material properties of the experimental multilayer system are
described in Appendix A. The experimental analysis and the signal processing are performed in
the frequency domain. The angular frequency is denoted by w. Normal point forces to plate P are
successively applied to the N = 25 points My, ..., My defined in Fig. 2. The normal velocities at

. L=600 mm ,
. P, ,
Rigid baﬂ'.? Porous medium <Figid baffle
P,

Normal point force

Fig. 1. Description of the experiment.
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these N driving points are measured using laser velocimetry (see Fig. 3). Consequently, the N
points M, ..., My in plate P; are driving and receiving points. In addition, the normal
accelerations are measured at N points M|, ..., My in plate P, (see Fig. 4) and then, the associated
normal velocities are deduced on plate P,. These N receiving points M, ..., My in plate P,
correspond to the N points Mj, ..., My in plate P; which means that, forallj =1, ..., N, point M
and point M have the same co- ordmates x; and x, (but have a different co- ordmate X3). Thls
choice allows the jump of the normal velocities between the two sides of the multilayer system to
be calculated. Let F”(w) be the normal point force applied to point Mj belonging to the N
driving points M\, ..., My in plate P;. Excitation F;”(w) induces the normal velocities Vi Prexp ()
and VP2 “P(w) at receiving point M; in plate P, and at corresponding receiving point ]\{J, 1n plate
P, respectlvely Let AV®? (a)) AV (o), ...,AVy (w))  with AV”I’ () = V' (o)

P’ “P(w) be the jump of the normal Velocmes to the N couples of points (M], M; ). For each k
ﬁxed in {1, ...,25} and for 8192 values of w in the frequency band of analysis [30,1600] Hz, the
experimental measures allow the (N x N) complex matrix-valued frequency response function
[H"?(w)] to be constructed for a linear filter whose inputs are the normal forces applied to N
nodes of plate P; and whose outputs are the jump of the normal velocities at the N couples of
points (M;, Z\NIJ-). Consequently, one has

AVP(w) - AV (o)

AV (@) = [H*(w)| F*?(w) in which [H*?(w)] = ,
AViT(@) - AV{(o)

FP(w) = (F{ (o), ..., FyT(w)). (1)

Let 4 =[100, 1600] Hz be the frequency band of analysis for which the experimental frequency
response function [H*”(w)] is invertible. For w in 4, the experimental impedance N x N complex
matrix [Z5?(w)] is then defined by

[Z°7(w)] = H(w)] !, VYwe. (2)
L=6(210mmi 5
i L
! 300 mm
.{if’"?z’i””?fs”"‘jii""?zs
16 7 fla' “'?1‘9"“ ‘ézﬂ H=400mm
A ! ) 200 mmi
T +'¢1_1 '?iz HE *”14 - g
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‘i""*'z """ ?3’""'&5 """ 5
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Fig. 2. Location of the 25 driving and receiving points in plate P;.
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Fig. 3. For plate P;, 25 driving points excited with a shaker and 25 receiving points measured using laser velocimetry.

Fig. 4. For plate P,, 25 receiving points measured by accelerometers.
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3. Construction of the basic algebraic model for an equivalent acoustic impedance
3.1. Setting the problem

The geometry of the multilayer system is shown in Fig. 5. The interfaces between the porous
medium and the plates P; and P, are denoted by X, and X,. The theoretical model which is
considered introduces an applied pressure field p acting on surface 2. The reference-plane surface
system of the multilayer system is denoted by S and coincides with surface 2. The co-ordinates
(x1, X2, x3) of a point belonging to the porous medium are given in the cartesian system whose
origin belongs to the reference-plane S. The x3 co-ordinate of the coupling interface 2| (or 2,) is 0
(or H) (in which H is the thickness of the porous medium). Below, X = (x1, x2) denotes the point
belonging to reference plane S. Let S; and S, be the mid-planes of the plates P; and P;.

3.2. Definition of the equivalent acoustic impedance density function

The experimental measures have been made in an anechoic room such that the effect of the
coupling between the external air and the multilayer system can be considered as negligible
compared to the effect of the viscous dissipation of the multilayer system. Let v¥'(X, w) and
vP2(X, w) be the normal velocities at the point M in plate P; and at the corresponding point M in
plate P, such that the corresponding points M and M have the same co-ordinates X = (x1, x»).
For fixed w, the equivalent acoustic impedance is the integral operator Z(w) defined by a density
function z(X, X', w) with complex values such that

pX,0) = {Z(w) (0", 0) — " (,0)}&)
= / 2%, %X, 0) V"X, w) — 72X, w)) d Sy, (3)
X'eS

in which (X, X')— z(X, X/, ) is called the equivalent acoustic impedance density function and where

dSy = dX] dX}. It should be noted that the complex operator Z(w) is defined by the complex
bilinear form

Z(w)u,v)y = /s /S z(X, X, w) u(X') v(X) dSz d Sy 4

It is assumed that the reciprocity principles can be applied. Therefore, the complex operator Z(w)
is symmetric and consequently, z(X, X', w) satisfies the following symmetry property:

2%, ¥, w) = z(¥, X, w). (5)

Py plate

Q  porous medium

Py plate

p

Fig. 5. Geometry of the multilayer system.
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Moreover, the system being considered a physical system, we have the property that Z(—w) =
Z(w) which yields

2(X, ¥, —w) = z2(X, ¥, w), (6)

where a denotes the conjugate of the complex number a. Introducing the real and the imaginary
parts of the equivalent acoustic impedance density function such that z(X, X', w) = z(X, X, w) +
iz;(X, X', w), from Egs. (5) and (6), it can be deduced that

2K, X, —w) = zp(X, X, 0), z;(X, X, —w) = —z;(X, X, w). (8)

The correspondence between the continuous model defined by Eq.(3) and the discrete
experimental model defined by Eq. (1) is obtained by discretizing Eq. (3) using the usual
collocation method with the N points of the mesh.

3.3. Local equivalent acoustic impedance

The local equivalent acoustic impedance denoted by z/°¢ is defined by
PR, ) = 2%, 0) "%, 0) - "X, 0)), VXES. ©)

Sometimes, such a local equivalent impedance z¢ is called the wall acoustic impedance [15,16].
From Egs. (3) and (9), it can be deduced that the local equivalent acoustic impedance can be
written as

2%, %, w) = 2%, ) do(X — X), (10)

in which, for all X’ belonging to S, do(X — X’) is the Dirac function such as fs d(X) (X — X')dSx =
$(X'). Tt should be noted that z/°“(X, w) differs from z(X, X, ») by a surface element. Introducing
the real and the imaginary parts of the local equivalent acoustic impedance such that z/¢(%, w) =
zﬂ‘g"(i, w) + izﬁ”"(f(, w), from Eq. (8), it can be deduced that

& —0) = K FK o), E-0) = &Ko) (i

For all X in S, the local equivalent acoustic impedance has to satisfy the following properties (see
Ref. [15]):

zllgc(i(, w)>0, VweR,
- zﬁ""(f(, w)=0, Ywe[—wy,w] in which wg >0,
lim (e 2%, ) = o(X) = opyiy > 0, (12)
o —
in which a,,;, is a given real positive constant and X+ o(X) is a positive-valued function defined on

S. Eq. (12) means that z“(X, w) ~ — a(X)/w if @ —0. For all X in S, the function o 25X, w) is a
continuous function and one has

lim (e 2%, w)) = 0. (13)
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Fig. 6. Acoustic impedance resistance z’]’;‘ (solid line) and acoustic impedance reactance zﬁ"’ (dashed line) for a local

equivalent acoustic impedance z¢ as a function of frequency o .

From Egs. (12) and (13), one deduces that

9%, w)#£0, VXeS, Vo, (14)
{iw 2%, )} g = {—@ 27°(X, )} o = UX) > 0. (15)

The real part corresponds to the dissipative part of z/°“(X, ) (acoustic impedance resistance). The
imaginary part corresponds to the conservative part of z°“(X, w) (acoustic impedance reactance).
Let Aw(X, ) = wP' (X, w) — wP2(X, w) be the difference between the normal displacements of the
two plates and let be Av(X, w) = v¥1 (X, w) — v2(X, ). Therefore, one has Av(X, w) = iw Aw(X, ®).
Eq. (9) yields

PE, ) = (X, 0) Av(X, ©)
= [—a)zéa"(i, W) + 1w zé‘{’"(i, )] Aw(X, m). (16)

Fig. 6 displays a typical graph (see for instance Ref. [15]) for the functions wr—»zﬁ?"'(i, w) and

o 2(%, w).

3.4. Model for the equivalent acoustic impedance density function

Let {(X, w) be defined by {(X,w) = z(X, X, ), and let {(X, w) and {;(X, w) be the real and the
imaginary parts of {(X,w) such that {(X,w) = (p(X, ) + i{;(X, w). As explained in Section 3.3,
Zlo¢(%, w) differs from {(X,w) by a surface element. Since z/9°(X,w) >0, one then deduces that
(r(X,w) > 0. Let pg(X, X', ) be the function corresponding to the normalization of zg(X, X', w) and
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defined by

Z1i(3~(, i/, (,U? (17)
\/CR(X: (D) CR(X/, (D)
For the imaginary part, there exists wo such that {;(X,wo) =0, for all X. Consequently, the
normalization of the imaginary part is defined by

Z~1(?~<, f(',ai) (18)
VILE, o) [{F, )]

pr(X, X X, w) =

,01()2, i/, CO) =

One then obtains

Z(ia ilaw) = \/|C(ia Cl))l |C()~(/,CU)| (pR(ia ilaw)
rX,0) [E,0) . o,
" \/ (& o) \/|c<~ TR ’a’))' (19

4. Properties of the equivalent acoustic impedance deduced from the experimental analysis

4.1. Experimental analysis

Fig. 7 displays the graph of w— tr{H*?(w) H*?(w)* } with respect to the frequency and shows
that frequencies below 300 Hz belong to the low-frequency range (the modal domain), and
frequencies above 300 Hz belong to the medium- and high-frequency ranges for which the
proposed algebraic model is constructed. When the frequency increases, the experimental
equivalent acoustic impedance tends to be a diagonal matrix. For instance, at a frequency 100 Hz,

0.2

tr(H"P(0) H¥P(w)*)

400 800 1200 1600
Frequency (Hz)

Fig. 7. Graph of w tr{H"?(w)H*? (w)*} with respect to the frequency.
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30

Fig. 8. Real part of the experimental impedance matrix [Z“%(2nv)]; at frequency v = 100 Hz as a function of indices i
and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

30—

20

0 1 1 )
0 10 20 30

Fig. 9. Real part of the experimental impedance matrix [Z?(2nv)]; at frequency v = 1200 Hz as a function of indices i
and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

Fig. 8 shows that the impedance matrix is not diagonal at all. Such a matrix corresponds to an
equivalent acoustic impedance which is non-local in space. Conversely, at a frequency of 1200 Hz,
this impedance matrix is a quasi-diagonal matrix which means that the equivalent acoustic
impedance is almost local in space (see Fig. 9). The detailed analysis of the experimental data basis
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shows that the upper bound of the frequency for which the equivalent acoustic impedance is non-
local in space is about 300 Hz (this is also the lower bound for which the impedance is almost local
in space). An additional detailed analysis of the experimental data basis [13] shows that the
experimental equivalent acoustic impedance can be considered as homogeneous and isotropic
with respect to the co-ordinates x; and x, for frequencies greater than 300 Hz. This kind of
analysis is too long and cannot be developed here. It should be noted that at high frequencies,
Fig. 9 shows that the structure of the impedance matrix is quasi-diagonal which is coherent with
the physical point of view. Some small differences appear, especially around the points 1 and 25
which are furthest away from each other relative to the symmetric point 13. These minor
differences (not greater than 5-8 Pa s/m) are certainly due to experimental errors (especially, one
reason could be that the experimental lateral boundary conditions could induce some differences
from one lateral side to another).

4.2. Basic algebraic model

For frequencies greater than 300 Hz, the equivalent acoustic impedance density function is then
considered as homogeneous and isotropic. Therefore, the density function z(X, X, w) depends only
on ||X — X'|| and is then rewritten as z(||[X — X/||, ). Consequently, {(X, w) does not depend on X and
is rewritten as

(X, o) ={w), (w)=_Ir0)+Ii(w) (20)
Eq. (19) is then rewritten as

. . - (R(w) .o
Z(|IX = X[l ) = [{(w)] <pR(||X — ¥ w) =+ ip Ik — Xl w) ). 21
()]
The following algebraic models for the functions pg(||X — X||, w) and p,(||X — X'||, w) are proposed:
pr(IX = X'||, ) = & FXIE) cos2n]|% — X'||/Ar(e)), (22)
pr(lI% = X||, ) = e I XWE©) cosm|k — X'||/21(w) + (). (23)

These algebraic models result from an analysis of the experimental data basis [13]. It should be
noted that the model of the real part depends on the parameter Lg(w) which is the length scale
controlling the exponential decrease of the amplitude and on the parameter Agz(w) controlling the
wavelength of the oscillations. The model of the imaginary part depends on similar parameters
L;(w) and A;(w) and on an additional parameter ¢;(w) corresponding to a phase. Eqgs. (21)—(23)
constitute the underlying algebraic model for the construction of the mean model and the random
model of the equivalent acoustic impedance. It should be noted that the parameters Lg, Ag, L;, A;
and ¢; have been chosen as a function of w, and consequently, px(/|X — X'||, w) and p,;(]|X — X'||, ®)
defined by Egs. (22) and (23) dependent on w. Nevertheless, one will see in the next sections that
the values of these parameters will be chosen as quantities independent of w. This assumption
results from a compromise between the simplicity of the model and its capability to represent the
experimental data basis. A more sophisticated mean algebraic model could be introduced in
choosing these parameters as a function of the frequency. Such a solution has been studied in
Ref. [13] and the gain obtained is not significant with respect to the frequency-independent
assumption retained for the mean model.
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5. Estimating the mean values of the basic algebraic model parameters using the experimental data
basis

The objective is to estimate (1) the values of {p(w), {;(w) and |{(w)| and (2) the parameters Lg,
Ar, L1, A7 and ?1 of the mean algebraic model.

5.1. Construction of a representation of {p(w)

Since the experimental values of (%7 (Xj,w) in the 25 measured points Xi,...,X»s are close
together (which is coherent with the introduced homogeneity assumption), an estimation of
{77 (w) is given by {37 (w) = 5% ]2; {r(X;, ) which represents the experimental mean value. The
following algebraic model for {z(w) is proposed:

01 \™ —apliol/om 1%
(r(@) = Lro + (Crmax — CrO) e K w0 ) (24)

@RO

in which the parameters (go, {gmax> @ro» Vg, ar and bg are fitted in minimizing [, (%" (w) —
I (w)P? dw in which 4 is the frequency band of analysis. The result of this minimization yields

(ro=1678 x 10 Pasm™>, (gpax =4.717x 10° Pasm™>, wgy = 5303 rads ',

yR:2, aR:46, bR:2

The frequency band of analysis 4 is equal to [100,1600] Hz. Fig. 10 displays the graph of {7 (w)
and {p(w) over the frequency band %. The comparison is good.

0 400 800 1200 1600
Frequency (Hz)

Fig. 10. Graphs of {z(w) (solid line) and of {%”(w) (cross symbols) over the frequency band [100,1600] Hz.
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5.2. Construction of a representation of {;(®)

Similar to the real part case, an estimation of {7/ () is returned as
|2
exp o ~
®) = = E X, »
() i (X, w)

which represents the experimental mean value. The following algebraic model for {;(w) is
proposed:

a d
@) == bt + o’ — 14— —— |, (25)
W (0* — w7y)” + ew

in which the parameters wyo, ay, by, ¢, d; and e; are fitted in minimizing [, |(7"(w) — 77 (w)P do.
The result of this minimization yields

wp=486x10°rads™", a;=47x10°, b =8 x 1071,
c;=1x10"%, d;=16x10", ¢, =24 x 10°.

Fig. 11 displays the graph of {;”(w) and {;(w) over the frequency band 4. The comparison is
good.

5.3. Calculation of the modulus |{(®)| and experimental comparisons

Fig. 12 shows the comparison of |(“(w)| with |{(w)| over the frequency band [100,1600] Hz, the
moduli [{“(w)| and |{(w)| being calculated using the fitted representation of {g(w) and {;(w).

(@), (@) x10°

exp
|

4

10 ¢

15 . . . .
0 400 800 1200 1600
Frequency (Hz)

Fig. 11. Graphs of {;(w) (solid line) and of {7¥(w) (cross symbols) over the frequency band [100, 1600] Hz.
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15

1P, 2] x 10°
5

4]

0 400 800 1200 1600
Frequency (Hz)

Fig. 12. Graphs of |{(w)] (solid line) and of [(*¥(w)| (cross symbols) over the frequency band [100, 1600] Hz.

5.4. Calculation of the phase and experimental comparisons

Let ¢;(w) be the phase defined by

cos(gh()) = % V()0 7. (26)

The corresponding experimental value is such that cos(¢;7(w)) = (7 (w)/|(*?(w)|. Fig. 13 shows
the comparison of ¢;7(w) with ¢,(w) over the frequency band [100,1600] Hz. It should be noted
that in Eq. (23), the mean value ¢, of the phase is then defined as a constant independent of w, by

).
=— (w)dw. (27)
VYA
From the experimental data basis, one obtains ¢, = 1.1697 rad.
5.5. Fitting the mean algebraic model

With respect to the real part, the mean algebraic model for py is defined by
prUI% = X|l) = e X ¥IEx cos(2ml|% — X1/ Zr), (28)

in which n = ||X — X/||. In the first step, the mean experimental function
1
o0 = [ o) do
|81 )

is introduced. This function is then deduced from the experimental data basis for the different
distances 1, 1,, ... relative to the driving and receiving points. In the second step, the values Lg
and Ar are calculated in minimizing Y, [or(1;) — %" (’7,')|2-
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(), )

()
|

. . . .
0 400 800 1200 1600
Frequency (Hz)

Fig. 13. Graphs of ¢,(w) (solid line) and ¢77 (w) (cross symbols) over the frequency band [100, 1600] Hz.
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Fig. 14. Graph of the function 7+ pr(y) (solid line) with n = ||X — X’|| and graph of its envelope (dashed line). Graph of
the function i p%? () (cross symbols).

One obtains
Lr =0.0664, /g =0.0771. (29)

Fig. 14 shows the graphs of 7+ p%”(n) and n+— pr(y). Fig. 15 displays the graphs of the functions
o pRl(n,w) for all the receiving points having the same distance = 0.075 m and the
corresponding graph of the function w pg(y). This figure shows that the frequency averaging
introduced is well adapted to the present case and justifies the frequency-independent parameters
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04|
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Frequency (Hz)

Fig. 15. Graphs of the function w— p%” (1, w) (dotted lines) and graph of the function @ pr(y) (solid line) for
n=0.075 m.

0 0.1 0.2 0.3 0.4
Distance (m)

Fig. 16. Graph of the function 5~ p;(1) (solid line) with n = ||X — X/|| and graph of its envelope (dashed line). Graph of
the function i p7 () (cross symbols).

assumption. With respect to the imaginary part, the mean model for p; is defined by
pi(n) = e " cosRmy /i + §,). (30)

Similarly, one introduces the mean experimental function

ex, 1 ex,
0 = o L P9, ) doo
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15

Pn,w), p,(n)

p

-05F

-1 L L 1
200 600 1000 1400 1800
Frequency (Hz)

exp

Fig. 17. Graphs of the function w p;”(n,w) (dotted lines) and graph of the function ww p;(y) (solid line) for
n=0.075 m.

which is deduced from the experimental data basis for the different distances #,,#,, ... . Then,
since ¢ ;= 1.1697 rad, the values L; and A; of the mean algebraic model are calculated by
77(n,)I*. One obtains

minimizing >, [ps(1;) — £

L; =0.0603, 1; = 0.0660. (31)
Fig. 16 shows the graphs of > p;"(7) and n+— p;(y). Fig. 17 displays the graphs of the functions
o p;T(n,w) for all the receiving points having the same distance # = 0.075 m and the
corresponding graph of the function w p;(#). Similarly, for the real case, Fig. 17 shows that the
frequency averaging introduced is well adapted to the present case and justifies the frequency-
independent parameters assumption.

6. Construction of a random model for p(n) and p,;(y)

The model relative to the local impedance (diagonal terms of the impedance matrix) leads to a
good model fitting of the experimental data. With respect to the off-diagonal terms of the
impedance matrix, which are a function of the distance between the different points of the
multilayer system, the deterministic model defined by Egs. (22) and (23) yields a reasonable
approximation with a significant dispersion with respect to all experimental points. Then, a
stochastic approach is proposed in order to increase the robustness of the algebraic model in its
capability to represent all the experimental data. A detailed analysis has been carried out in order
to define the parameters of the basic algebraic model which have to be modelled by a random
variable. The retained model is the basic algebraic model in which (i and |{| are modelled by the
mean values estimated in Sections 5.1 and 5.3, Lg and L; are modelled by Lk and L; estimated in
Section 5.5 and where Ag, A; and ¢; are modelled by mutually independent random variables Ag,
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Ay and @y, respectively, independent of frequency w. By construction, the mean values of these
three random variables are 4g, 4; and ¢ ; estimated in Sections 5.4 and 5.5.

6.1. Estimating the probability distributions of the random parameters

The variables A and A; are positive-valued random variables and @; is a random variable with
values in [0, 21t]. The maximum entropy principle is used to construct the probability distribution
[17] for each random variable Ag, A; or ®@;. Below, A, denotes either A or A;. It is assumed that
the probability distribution of the random variable A, is defined by a probability density
function p4 (4) with respect to di. For random variable A,, the available information consists
of the mean value m| = E{A,} and of the second order moment m} = E {Af}. Consequently,
the maximum entropy principle consists in maximizing entropy . defined by “(p4, (1)) =
— Jar P4,(A)In(ps,(2))dA with the constraints defined by the available information and
written as

/ A pa(2ydi=mi, forl=0,1,2. (32)
R
One then obtains

2
2

P, () = Vg (2) Cy e Hii1? (33)

in which Cj; >0, p} and w5 > 0 have to be chosen such that the constraints be satisfied. One has
myg = 1. The moment m}| = A, has been calculated in Section 5. The second order moment m?, is
estimated using the experimental data basis and yields m{ = 0.006994 (resp. m) = 0.005107).
Consequently, the standard deviation o4, = \/m5 — 42 is 64, = 0.0324 (resp. o4, = 0.0274). One
then has to solve the three algebraic equations defined by the three constraints defined by Eq. (32)
in which mjg, m| and m} are given and where the unknowns are Cj>0, uj and w, > 0. This
calculation yields
CR=0926>0, uf=-67377, uf=442.809>0,

C!=1012>0, pf=-81.157, ub=622.792>0. (34)

Using the same methodology for random variable @, the probability density function pg,(¢) is
written as

b P
Py () = Voom() CF e 19154, (35)
in which C(‘f , ,u‘f and 'u<2b have to be such that
2
¢ pa(p)dp =mf, 1=0,1,2, (36)

and where mg) =1, m‘ll’ = ¢, has been calculated in Section 5 and where the second order moment
m? is estimated with the experimental data basis and yields mg’ = 1.5085. Consequently, the

standard deviation ¢4, = \/mg’ - Qi is 0.3745 rad. The calculation of CY, ,u‘f and y‘zﬁ yields

Cl =10.776, u=11.124, puf = —1.623. (37)
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6.2. Construction of the probabilistic algebraic model for px(n)

From the basic algebraic model and from the hypotheses introduced in Section 4.2, the real-
valued random variable px(n) is defined by

pr(n) = e "t cos(2mn/ Ag). (38)

For a fixed value 5 of the distance, the confidence region of pg(n), corresponding to a given
probability level P, is defined by the upper envelope p (1) and the lower envelope px(n) such that

PR <pr(n) <pr(n)} =P (39)

The mean value and the second order moment of the random variable pg(n) are such that
+ o0
Etps@)' = [ pag() e /b cosomn/ ) 42 2= 1.2 (40)
0

and the variance is
o) (1) = E{pr(n)’} — (E{pgr(n)})’. (41)

The upper envelope is constructed by using Tchebychev’s inequality which, for a real-valued
centered random variable X, is written as

P(X|=e)<E{XI}/e. (42)
One then has
Pllpr(n) — E{pr(m}=er(n)} <E{lpr(n) — E{pr()}I*}/ex(n). (43)
Using Eq. (41) yields
Pllpr(n) — E{pr(m}|=er)} <o, (1)/e0n), (44)
and consequently,
Pipr(n) — E{pr(n}l<er(n)}>Pe, (45)

in which P.=1—0; (1)/ex(n). The probability level P, being fixed, one obtains er(n) =
0,,(m/+/1 — P.. Eq. (45) is rewritten as

P{—er(n) + E{pr(n)} <pr() <er(n) + E{pr(n)}} = P.. (46)
Comparing Eq. (46) with Eq. (39) yields
pr() = E{pr()} +er(n),  pr(n) = E{pr(n)} — er(n). (47)

The confidence region corresponding to a probability level equal to 0.95 is shown in Fig. 18. In
this figure, each vertical solid line consists of a set of dot symbols corresponding to the
experimental values for a same distance #. It should be noted that almost all the significant
experimental data are inside the confidence region (95%).
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|
0 0.1 0.2 0.3 0.4
Distance (m)

Fig. 18. Confidence region of 17— pr(n). Upper envelope > pk(17) (upper thick solid line). Lower envelope 5 pr(#)
(lower thick solid line). Mean algebraic model n+ pgr(n) (thin solid line). Experimental data (vertical solid line
constituted of dot symbols). Mean value of these experimental data (circle symbols).

0 0.1 0.2 0.3 0.4
Distance (m)

Fig. 19. Confidence region of n+ p;(n). Upper envelope n— pj () (upper thick solid line). Lower envelope 1+ p; (1)
(lower thick solid line). Mean algebraic model 5+ p;(y) (thin solid line). Experimental data (vertical solid line
constituted of dot symbols). Mean value of these experimental data (circle symbols).

6.3. Construction of the probabilistic algebraic model for p;(n)
Using the approach defined in Section 6.2, the real-valued random variable p;(n) is defined by

p;(n) = e cos(2nn/ Ar + Dp), (48)
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which depends on the random variables A; and @;. The confidence region of p;(r) is defined by
P(pr (M<p ) <py ) =Pe, (49)

in which the upper envelope is defined by p; (n) = E{p,;(7)} + &/(17) and the lower envelope is

defined by p; (1) = E{p;(n)} — er(n) with &;() = 6,,(1)/+/1 — P.. The mean value and the second
order moment of the random variable p;(1) are defined by

+ o0 2n
Elp ()"} = /0 /O pas() pay() (e FicosQ@mn/2 + $)1F didp, a=1,2.  (50)

The variance is such that oil(r]) =E{p ,(11)2} —(E{p ,(17)})2. The confidence region corresponding

to a probability level equal to 0.95 is shown in Fig. 19. In this figure, each vertical solid line
consists of a set of dot symbols corresponding to the experimental values for a same distance 7.
Similarly for the probabilistic model pg(n), it can be shown that almost all the significant
experimental data are inside the confidence region (95%).

7. Conclusions

Soundproofing schemes including porous materials are difficult to model. The objective of
Part 1 of this paper is to construct an equivalent acoustic impedance for a multilayer system
consisting of a three-dimensional porous medium inserted between two thin plates. The
construction of a probabilistic algebraic model is based on the introduction of an adapted
algebraic model and on the use of an experimental data basis specifically carried out for this
research. The probabilistic algebraic model consists of the mean algebraic model and of the
probability distribution of the random model parameters. A minimum number of parameters in
the model is used and the parameters are fitted using the experimental data basis. The probability
distributions are modelled using the entropy maximum principle. This work has been performed
in order to construct an algebraic representation which synthesizes a large experimental data basis
over the medium- and high-frequency ranges, using a small number of parameters for the
algebraic model. The comparison between this model and the experiments is good and
consequently, this model can be considered as a synthesis of this experimental data basis and will
be reused for other researches.
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Appendix A. Geometry and materials properties of the experimental multilayer system

The multilayer system consists of a porous medium and of two plates in alumini for which their
thicknesses are ip, = 1 mm and /p, = 3 mm. Table 1 summarizes the plate parameters. The
porous medium is a polyurethane foam saturated in air whose thickness A is 100 mm. Table 2
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Table 1

Physical parameters for plates P; and P,

Parameters Value

Young’s modulus E? =174 x10" Pa
Poisson’s ratio v =0.33

Structural damping factor nt = waf(w) =104
Mass density pf = 2800 kg m~>
Table 2

Physical parameters for air into the porous medium

Parameters Value

Mass density pr=1213 kg m>
Adiabatic bulk modulus K, =142 x10°Pa
Viscosity ny=184x107° kgm™'s~!
Prandtl number Pr=0.71

Specific heats ratio y=14

Table 3

Solid phase parameters and fluid—solid coupling parameters for the porous medium
Parameters Value

Mass density of the solid phase py =342kgm?
Young’s modulus E =110,000 Pa
Transverse modulus G = 40,741 Pa
Structural damping factor n, = oa(w) = 0.09
Poisson’s ratio v=0.35

Porosity ® =096

Tortuosity o =127

Resistivity o =10,867 Nsm™
Viscous characteristic length A =96 pym

Thermal characteristic length A" =288 pm

summarizes the air parameters. The parameters of the porous medium, introduced in the Biot
theory applied in the acoustic problems and characterizing the solid phase and the fluid—solid
coupling, have been measured [12,18]. A summary of these results is presented in Table 3.
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