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Abstract

The context of this research is devoted to the construction of an equivalent acoustic impedance model for
a soundproofing scheme consisting of a three-dimensional porous medium inserted between two thin plates.
Part 1 of this paper presents the experiments performed and a probabilistic algebraic model of the wall
acoustic impedance constructed using the experimental data basis for the medium- and high-frequency
ranges. The probabilistic algebraic model is constructed by using the general mathematical properties of
wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency,
decreasing functions when frequency goes to infinity, behaviour when frequency goes to zero and so on).
The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis.
Finally, this probabilistic algebraic model summarizes all the experimental data bases and consequently can
be reused for other researches.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the medium- and high-frequency ranges, the modelling of a multilayer system containing porous
materials is very important for noise control in aircrafts, automobiles, buildings, etc. Difficulties occur
in modelling such multilayer systems and in validating them with experimental data bases. Many
works have already been published about experimental data bases concerning the acoustic
transmission through multilayer systems or concerning the surface impedance of multilayer systems
with a rigid wall [1–10]. Nevertheless, very little information exists concerning the experimental data
basis for the equivalent acoustic impedance of multilayer systems with porous media and for the
medium- and high-frequency ranges. Such experimental data bases are necessary to understand the
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physics of such systems and to validate analytical and numerical models in the medium- and high-
frequency ranges. The main objective of Part 1 of this paper is to present an experimental data basis
concerning the equivalent acoustic impedance of a multilayer system containing a porous medium and
to propose a probabilistic model which allows the experimental data basis to be synthesized and
consequently, to be reused by the community for other researches. In particular, this experimental
data bases will be used in Part 2 [11] of this paper which is devoted to the validation of an analytical
model of such a multilayer system for the medium- and high-frequency ranges. The experimental
multilayer system consists of a three-dimensional porous medium inserted between two thin plates. At
a given frequency, the equivalent acoustic impedance of such a multilayer system is the linear mapping
between the pressure field applied to one plate and the jump of the normal velocities to each plate.
Such an equivalent acoustic impedance can be introduced in the models allowing vibro-acoustic
predictions of complex mechanical systems. An experimental data basis has specifically been
constructed for this research [12] and corresponds to the experimental identification of the equivalent
acoustic impedance in the frequency band [100,1600] Hz, the medium and high ranges corresponding
to the frequency band [300,1600] Hz. Using this experimental data basis, a probabilistic algebraic
model of the equivalent acoustic impedance of the multilayer system is constructed. This probabilistic
model synthesizes all the experimental data bases through the use of a mean algebraic model and a
random fluctuation model [13,14]. The number of parameters of this model (correlation lengths) is
minimum. A good approximation of this experimental data basis is given by this model. Section 2
deals with the experiment. In Section 3, the construction of the basic algebraic model for the
equivalent acoustic impedance is developed. Section 4 is devoted to the properties of the equivalent
acoustic impedance which are deduced from the analysis of the experimental data basis. In Section 5,
one presents the estimation of the mean values of the basic algebraic model parameters using the
experimental data basis and finally, Section 6 deals with the construction of the random model.

2. Description of an equivalent acoustic impedance experiment

An experiment [12] was carried out in an anechoic room in order to measure the equivalent
acoustic impedance of a multilayer system consisting of a three-dimensional porous medium
inserted between two thin plates in aluminium, denoted as P1 and P2 (see Fig. 1). The length and
width of the multilayer system are 0.6 and 0:4 m respectively. This multilayer system is fixed in a
rigid baffle. The geometry and the material properties of the experimental multilayer system are
described in Appendix A. The experimental analysis and the signal processing are performed in
the frequency domain. The angular frequency is denoted by o:Normal point forces to plate P1 are
successively applied to the N ¼ 25 points M1;y;MN defined in Fig. 2. The normal velocities at
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Fig. 1. Description of the experiment.
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these N driving points are measured using laser velocimetry (see Fig. 3). Consequently, the N

points M1;y;MN in plate P1 are driving and receiving points. In addition, the normal
accelerations are measured at N points *M1;y; *MN in plate P2 (see Fig. 4) and then, the associated
normal velocities are deduced on plate P2: These N receiving points *M1;y; *MN in plate P2
correspond to the N pointsM1;y;MN in plate P1 which means that, for all j ¼ 1;y;N; pointMj

and point *Mj have the same co-ordinates x1 and x2 (but have a different co-ordinate x3). This
choice allows the jump of the normal velocities between the two sides of the multilayer system to
be calculated. Let F

exp
k ðoÞ be the normal point force applied to point Mk belonging to the N

driving points M1;y;MN in plate P1: Excitation F
exp
k ðoÞ induces the normal velocities V

P1 exp
jk ðoÞ

and V
P2 exp
jk ðoÞ at receiving point Mj in plate P1 and at corresponding receiving point *Mj in plate

P2; respectively. Let DVexpðoÞ ¼ ðDV
exp
1k ðoÞ;y;DV

exp
Nk ðoÞÞ with DV

exp
jk ðoÞ ¼ V

P1 exp
jk ðoÞ�

V
P2 exp
jk ðoÞ be the jump of the normal velocities to the N couples of points ðMj; *MjÞ: For each k
fixed in f1;y; 25g and for 8192 values of o in the frequency band of analysis [30,1600] Hz, the
experimental measures allow the ðN � NÞ complex matrix-valued frequency response function
½HexpðoÞ	 to be constructed for a linear filter whose inputs are the normal forces applied to N

nodes of plate P1 and whose outputs are the jump of the normal velocities at the N couples of
points ðMj; *MjÞ: Consequently, one has

DVexpðoÞ ¼ ½HexpðoÞ	 FexpðoÞ in which ½HexpðoÞ	 ¼

DV
exp
11 ðoÞ ? DV

exp
1N ðoÞ

^

DV
exp
N1 ðoÞ ? DV

exp
NN ðoÞ

2
64

3
75;

FexpðoÞ ¼ ðFexp
1 ðoÞ;y;Fexp

N ðoÞÞ: ð1Þ

Let B ¼ ½100; 1600	 Hz be the frequency band of analysis for which the experimental frequency
response function ½HexpðoÞ	 is invertible. For o in B; the experimental impedance N � N complex
matrix ½ZexpðoÞ	 is then defined by

½ZexpðoÞ	 ¼ ½HexpðoÞ	�1; 8oAB: ð2Þ
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Fig. 2. Location of the 25 driving and receiving points in plate P1:
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Fig. 3. For plate P1; 25 driving points excited with a shaker and 25 receiving points measured using laser velocimetry.

Fig. 4. For plate P2; 25 receiving points measured by accelerometers.
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3. Construction of the basic algebraic model for an equivalent acoustic impedance

3.1. Setting the problem

The geometry of the multilayer system is shown in Fig. 5. The interfaces between the porous
medium and the plates P1 and P2 are denoted by S1 and S2: The theoretical model which is
considered introduces an applied pressure field p acting on surface S0: The reference-plane surface
system of the multilayer system is denoted by S and coincides with surface S1: The co-ordinates
ðx1; x2; x3Þ of a point belonging to the porous medium are given in the cartesian system whose
origin belongs to the reference-plane S: The x3 co-ordinate of the coupling interface S1 (or S2) is 0
(or H) (in which H is the thickness of the porous medium). Below, *x ¼ ðx1; x2Þ denotes the point
belonging to reference plane S: Let S1 and S2 be the mid-planes of the plates P1 and P2:

3.2. Definition of the equivalent acoustic impedance density function

The experimental measures have been made in an anechoic room such that the effect of the
coupling between the external air and the multilayer system can be considered as negligible
compared to the effect of the viscous dissipation of the multilayer system. Let vP1ð *x;oÞ and
vP2ð *x;oÞ be the normal velocities at the point M in plate P1 and at the corresponding point *M in
plate P2 such that the corresponding points M and *M have the same co-ordinates *x ¼ ðx1;x2Þ:
For fixed o; the equivalent acoustic impedance is the integral operator ZðoÞ defined by a density
function zð *x; *x0;oÞ with complex values such that

pð *x;oÞ ¼ fZðoÞ ðvP1ð�;oÞ � vP2ð�;oÞÞgð *xÞ

¼
Z
*x0AS

zð *x; *x0;oÞ ðvP1ð *x0;oÞ � vP2ð *x0;oÞÞ dS *x0 ; ð3Þ

in which ð *x; *x0Þ/zð *x; *x0;oÞ is called the equivalent acoustic impedance density function and where
dS *x0 ¼ d *x0

1 d *x
0
2: It should be noted that the complex operator ZðoÞ is defined by the complex

bilinear form

/ZðoÞ u; vS ¼
Z

S

Z
S

zð *x; *x0;oÞ uð *x0Þ vð *xÞ dS *x dS *x0 : ð4Þ

It is assumed that the reciprocity principles can be applied. Therefore, the complex operator ZðoÞ
is symmetric and consequently, zð *x; *x0;oÞ satisfies the following symmetry property:

zð *x; *x0;oÞ ¼ zð *x0; *x;oÞ: ð5Þ
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Fig. 5. Geometry of the multilayer system.
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Moreover, the system being considered a physical system, we have the property that Zð�oÞ ¼
ZðoÞ which yields

zð *x; *x0;�oÞ ¼ zð *x; *x0;oÞ; ð6Þ

where %a denotes the conjugate of the complex number a: Introducing the real and the imaginary
parts of the equivalent acoustic impedance density function such that zð *x; *x0;oÞ ¼ zRð *x; *x0;oÞ þ
izI ð *x; *x0;oÞ; from Eqs. (5) and (6), it can be deduced that

zRð *x; *x0;oÞ ¼ zRð *x0; *x;oÞ; zI ð *x; *x0;oÞ ¼ zI ð *x0; *x;oÞ; ð7Þ

zRð *x; *x0;�oÞ ¼ zRð *x; *x0;oÞ; zI ð *x; *x0;�oÞ ¼ �zI ð *x; *x0;oÞ: ð8Þ

The correspondence between the continuous model defined by Eq. (3) and the discrete
experimental model defined by Eq. (1) is obtained by discretizing Eq. (3) using the usual
collocation method with the N points of the mesh.

3.3. Local equivalent acoustic impedance

The local equivalent acoustic impedance denoted by zloc is defined by

pð *x;oÞ ¼ zlocð *x;oÞ ðvP1ð *x;oÞ � vP2ð *x;oÞÞ; 8 *xAS: ð9Þ

Sometimes, such a local equivalent impedance zloc is called the wall acoustic impedance [15,16].
From Eqs. (3) and (9), it can be deduced that the local equivalent acoustic impedance can be
written as

zð *x; *x0;oÞ ¼ zlocð *x;oÞ d0ð *x� *x0Þ; ð10Þ

in which, for all *x0 belonging to S; d0ð *x� *x0Þ is the Dirac function such as
R

S
fð *xÞ d0ð *x� *x0Þ dS *x ¼

fð *x0Þ: It should be noted that zlocð *x;oÞ differs from zð *x; *x0;oÞ by a surface element. Introducing
the real and the imaginary parts of the local equivalent acoustic impedance such that zlocð *x;oÞ ¼
zloc

R ð *x;oÞ þ izloc
I ð *x;oÞ; from Eq. (8), it can be deduced that

zloc
R ð *x;�oÞ ¼ zloc

R ð *x;oÞ; zloc
I ð *x;�oÞ ¼ �zloc

I ð *x;oÞ: ð11Þ

For all *x in S; the local equivalent acoustic impedance has to satisfy the following properties (see
Ref. [15]):

zloc
R ð *x;oÞ > 0; 8oAR;

� o zloc
I ð *x;oÞX0; 8oA½�o0;o0	 in which o0 > 0;

lim
o-0

ð�o zloc
I ð *x;oÞÞ ¼ að *xÞXamin > 0; ð12Þ

in which amin is a given real positive constant and *x/að *xÞ is a positive-valued function defined on
S: Eq. (12) means that zloc

I ð *x;oÞB� að *xÞ=o if o-0: For all *x in S; the function o/zloc
R ð *x;oÞ is a

continuous function and one has

lim
o-0

ðo zloc
R ð *x;oÞÞ ¼ 0: ð13Þ
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From Eqs. (12) and (13), one deduces that

zlocð *x;oÞa0; 8 *xAS; 8o; ð14Þ

fio zlocð *x;oÞgo¼0 ¼ f�o zloc
I ð *x;oÞgo¼0 ¼ að *xÞ > 0: ð15Þ

The real part corresponds to the dissipative part of zlocð *x;oÞ (acoustic impedance resistance). The
imaginary part corresponds to the conservative part of zlocð *x;oÞ (acoustic impedance reactance).
Let Dwð *x;oÞ ¼ wP1ð *x;oÞ � wP2ð *x;oÞ be the difference between the normal displacements of the
two plates and let be Dvð *x;oÞ ¼ vP1ð *x;oÞ � vP2ð *x;oÞ: Therefore, one has Dvð *x;oÞ ¼ ioDwð *x;oÞ:
Eq. (9) yields

#pð *x;oÞ ¼ zlocð *x;oÞDvð *x;oÞ

¼ ½�ozloc
I ð *x;oÞ þ io zloc

R ð *x;oÞ	Dwð *x;oÞ: ð16Þ

Fig. 6 displays a typical graph (see for instance Ref. [15]) for the functions o/zloc
R ð *x;oÞ and

o/zloc
I ð *x;oÞ:

3.4. Model for the equivalent acoustic impedance density function

Let zð *x;oÞ be defined by zð *x;oÞ ¼ zð *x; *x;oÞ; and let zRð *x;oÞ and zI ð *x;oÞ be the real and the
imaginary parts of zð *x;oÞ such that zð *x;oÞ ¼ zRð *x;oÞ þ izI ð *x;oÞ: As explained in Section 3.3,
zlocð *x;oÞ differs from zð *x;oÞ by a surface element. Since zloc

R ð *x;oÞ > 0; one then deduces that
zRð *x;oÞ > 0: Let rRð *x; *x

0;oÞ be the function corresponding to the normalization of zRð *x; *x0;oÞ and
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defined by

rRð *x; *x
0;oÞ ¼

zRð *x; *x0;oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRð *x;oÞ zRð *x0;oÞ

p : ð17Þ

For the imaginary part, there exists o0 such that zI ð *x;o0Þ ¼ 0; for all *x: Consequently, the
normalization of the imaginary part is defined by

rI ð *x; *x
0;oÞ ¼

zI ð *x; *x0;oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzð *x;oÞj jzð *x0;oÞj

p : ð18Þ

One then obtains

zð *x; *x0;oÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzð *x;oÞj jzð *x0;oÞj

p
rRð *x; *x

0;oÞ

 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRð *x;oÞ
jzð *x;oÞj

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRð *x0;oÞ
jzð *x0;oÞj

s
þ irI ð *x; *x

0;oÞ

!
: ð19Þ

4. Properties of the equivalent acoustic impedance deduced from the experimental analysis

4.1. Experimental analysis

Fig. 7 displays the graph of o/trfHexpðoÞHexpðoÞ%g with respect to the frequency and shows
that frequencies below 300 Hz belong to the low-frequency range (the modal domain), and
frequencies above 300 Hz belong to the medium- and high-frequency ranges for which the
proposed algebraic model is constructed. When the frequency increases, the experimental
equivalent acoustic impedance tends to be a diagonal matrix. For instance, at a frequency 100 Hz;
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Fig. 8 shows that the impedance matrix is not diagonal at all. Such a matrix corresponds to an
equivalent acoustic impedance which is non-local in space. Conversely, at a frequency of 1200 Hz;
this impedance matrix is a quasi-diagonal matrix which means that the equivalent acoustic
impedance is almost local in space (see Fig. 9). The detailed analysis of the experimental data basis
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Fig. 8. Real part of the experimental impedance matrix ½Zexpð2pnÞ	ij at frequency n ¼ 100 Hz as a function of indices i

and j: The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

Fig. 9. Real part of the experimental impedance matrix ½Zexpð2pnÞ	ij at frequency n ¼ 1200 Hz as a function of indices i

and j: The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

B. Faverjon, C. Soize / Journal of Sound and Vibration 276 (2004) 571–592 579



shows that the upper bound of the frequency for which the equivalent acoustic impedance is non-
local in space is about 300 Hz (this is also the lower bound for which the impedance is almost local
in space). An additional detailed analysis of the experimental data basis [13] shows that the
experimental equivalent acoustic impedance can be considered as homogeneous and isotropic
with respect to the co-ordinates x1 and x2 for frequencies greater than 300 Hz: This kind of
analysis is too long and cannot be developed here. It should be noted that at high frequencies,
Fig. 9 shows that the structure of the impedance matrix is quasi-diagonal which is coherent with
the physical point of view. Some small differences appear, especially around the points 1 and 25
which are furthest away from each other relative to the symmetric point 13. These minor
differences (not greater than 5–8 Pa s=m) are certainly due to experimental errors (especially, one
reason could be that the experimental lateral boundary conditions could induce some differences
from one lateral side to another).

4.2. Basic algebraic model

For frequencies greater than 300 Hz; the equivalent acoustic impedance density function is then
considered as homogeneous and isotropic. Therefore, the density function zð *x; *x0;oÞ depends only
on jj *x� *x0jj and is then rewritten as zðjj *x� *x0jj;oÞ: Consequently, zð *x;oÞ does not depend on *x and
is rewritten as

zð *x;oÞ ¼ zðoÞ; zðoÞ ¼ zRðoÞ þ izI ðoÞ: ð20Þ

Eq. (19) is then rewritten as

zðjj *x� *x0jj;oÞ ¼ jzðoÞj rRðjj *x� *x0jj;oÞ
zRðoÞ
jzðoÞj

þ irI ðjj *x� *x0jj;oÞ
� �

: ð21Þ

The following algebraic models for the functions rRðjj *x� *x0jj;oÞ and rI ðjj *x� *x0jj;oÞ are proposed:

rRðjj *x� *x0jj;oÞ ¼ e�jj *x� *x0 jj=LRðoÞ cosð2pjj *x� *x0jj=lRðoÞÞ; ð22Þ

rI ðjj *x� *x0jj;oÞ ¼ e�jj *x� *x0 jj=LI ðoÞ cosð2pjj *x� *x0jj=lI ðoÞ þ fI ðoÞÞ: ð23Þ

These algebraic models result from an analysis of the experimental data basis [13]. It should be
noted that the model of the real part depends on the parameter LRðoÞ which is the length scale
controlling the exponential decrease of the amplitude and on the parameter lRðoÞ controlling the
wavelength of the oscillations. The model of the imaginary part depends on similar parameters
LI ðoÞ and lI ðoÞ and on an additional parameter fI ðoÞ corresponding to a phase. Eqs. (21)–(23)
constitute the underlying algebraic model for the construction of the mean model and the random
model of the equivalent acoustic impedance. It should be noted that the parameters LR; lR; LI ; lI

and fI have been chosen as a function of o; and consequently, rRðjj *x� *x0jj;oÞ and rI ðjj *x� *x0jj;oÞ
defined by Eqs. (22) and (23) dependent on o: Nevertheless, one will see in the next sections that
the values of these parameters will be chosen as quantities independent of o: This assumption
results from a compromise between the simplicity of the model and its capability to represent the
experimental data basis. A more sophisticated mean algebraic model could be introduced in
choosing these parameters as a function of the frequency. Such a solution has been studied in
Ref. [13] and the gain obtained is not significant with respect to the frequency-independent
assumption retained for the mean model.
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5. Estimating the mean values of the basic algebraic model parameters using the experimental data

basis

The objective is to estimate (1) the values of zRðoÞ; zI ðoÞ and jzðoÞj and (2) the parameters
%
LR;

%
lR;

%
LI ;

%
lI and f

I
of the mean algebraic model.

5.1. Construction of a representation of zRðoÞ

Since the experimental values of zexp
R ð *xj;oÞ in the 25 measured points *x1;y; *x25 are close

together (which is coherent with the introduced homogeneity assumption), an estimation of
zexp

R ðoÞ is given by zexp
R ðoÞ ¼ 1

25

P25
j¼1 zRð *xj;oÞ which represents the experimental mean value. The

following algebraic model for zRðoÞ is proposed:

zRðoÞ ¼ zR 0 þ ðzR max � zR 0Þ
joj
oR0

� �gR

e�aRjjoj=oR0�1jbR
; ð24Þ

in which the parameters zR 0; zR max; oR0; gR; aR and bR are fitted in minimizing
R
B jzexp

R ðoÞ �
zexp

R ðoÞj2 do in which B is the frequency band of analysis. The result of this minimization yields

zR 0 ¼ 1:678� 10
6 Pa s m�3; zR max ¼ 4:717� 106 Pa s m�3; oR0 ¼ 5303 rad s

�1;

gR ¼ 2; aR ¼ 46; bR ¼ 2:

The frequency band of analysis B is equal to [100,1600] Hz. Fig. 10 displays the graph of zexp
R ðoÞ

and zRðoÞ over the frequency band B: The comparison is good.
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Fig. 10. Graphs of zRðoÞ (solid line) and of z
exp
R ðoÞ (cross symbols) over the frequency band ½100; 1600	 Hz:
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5.2. Construction of a representation of zI ðoÞ

Similar to the real part case, an estimation of zexp
I ðoÞ is returned as

zexp
I ðoÞ ¼

1

25

X25
j¼1

zI ð *xj;oÞ

which represents the experimental mean value. The following algebraic model for zI ðoÞ is
proposed:

zI ðoÞ ¼
aI

o
bIo4 þ cI o2 � 1þ

dI

ðo2 � o2I0Þ
2 þ eIo2

 !
; ð25Þ

in which the parameters oI0; aI ; bI ; cI ; dI and eI are fitted in minimizing
R
B jzexp

I ðoÞ � zexp
I ðoÞj2 do:

The result of this minimization yields

oI0 ¼ 4:86� 103 rad s
�1; aI ¼ 4:7� 109; bI ¼ 8� 10�16;

cI ¼ 1� 10�25; dI ¼ 1:6� 1014; eI ¼ 2:4� 106:

Fig. 11 displays the graph of zexp
I ðoÞ and zI ðoÞ over the frequency band B: The comparison is

good.

5.3. Calculation of the modulus jzðoÞj and experimental comparisons

Fig. 12 shows the comparison of jzexpðoÞj with jzðoÞj over the frequency band [100,1600] Hz, the
moduli jzexpðoÞj and jzðoÞj being calculated using the fitted representation of zRðoÞ and zI ðoÞ:
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5.4. Calculation of the phase and experimental comparisons

Let fI ðoÞ be the phase defined by

cosðfI ðoÞÞ ¼
zI ðoÞ
jzðoÞj

; cI ðoÞA½0; p	: ð26Þ

The corresponding experimental value is such that cosðfexp
I ðoÞÞ ¼ zexp

I ðoÞ=jzexpðoÞj: Fig. 13 shows
the comparison of fexp

I ðoÞ with fI ðoÞ over the frequency band [100,1600] Hz. It should be noted
that in Eq. (23), the mean value f

I
of the phase is then defined as a constant independent of o; by

f
I
¼
1

jBj

Z
B

fI ðoÞ do: ð27Þ

From the experimental data basis, one obtains f
I
¼ 1:1697 rad:

5.5. Fitting the mean algebraic model

With respect to the real part, the mean algebraic model for rR is defined by

rRðjj *x� *x0jjÞ ¼ e�jj *x� *x0 jj=
%
LR cosð2pjj *x� *x0jj=

%
lRÞ; ð28Þ

in which Z ¼ jj *x� *x0jj: In the first step, the mean experimental function

%
rexp

R ðZÞ ¼
1

jBj

Z
B

rexp
R ðZ;oÞ do

is introduced. This function is then deduced from the experimental data basis for the different
distances Z1; Z2;y relative to the driving and receiving points. In the second step, the values

%
LR

and
%
lR are calculated in minimizing

P
j j
%
rRðZjÞ �

%
rexp

R ðZjÞj
2:
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One obtains

%
LR ¼ 0:0664;

%
lR ¼ 0:0771: ð29Þ

Fig. 14 shows the graphs of Z/
%
rexp

R ðZÞ and Z/
%
rRðZÞ: Fig. 15 displays the graphs of the functions

o/rexp
R ðZ;oÞ for all the receiving points having the same distance Z ¼ 0:075 m and the

corresponding graph of the function o/
%
rRðZÞ: This figure shows that the frequency averaging

introduced is well adapted to the present case and justifies the frequency-independent parameters
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assumption. With respect to the imaginary part, the mean model for rI is defined by

rI ðZÞ ¼ e
�Z=

%
LI cosð2pZ=

%
lI þ f

I
Þ: ð30Þ

Similarly, one introduces the mean experimental function

%
rexp

I ðZÞ ¼
1

jBj

Z
B

rexp
I ðZ;oÞ do
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which is deduced from the experimental data basis for the different distances Z1; Z2;y : Then,
since f

I
¼ 1:1697 rad; the values

%
LI and

%
lI of the mean algebraic model are calculated by

minimizing
P

j j
%
rI ðZjÞ �

%
rexp

I ðZjÞj
2: One obtains

%
LI ¼ 0:0603;

%
lI ¼ 0:0660: ð31Þ

Fig. 16 shows the graphs of Z/
%
rexp

I ðZÞ and Z/
%
rI ðZÞ: Fig. 17 displays the graphs of the functions

o/rexp
I ðZ;oÞ for all the receiving points having the same distance Z ¼ 0:075 m and the

corresponding graph of the function o/
%
rI ðZÞ: Similarly, for the real case, Fig. 17 shows that the

frequency averaging introduced is well adapted to the present case and justifies the frequency-
independent parameters assumption.

6. Construction of a random model for qRðgÞ and qI ðgÞ

The model relative to the local impedance (diagonal terms of the impedance matrix) leads to a
good model fitting of the experimental data. With respect to the off-diagonal terms of the
impedance matrix, which are a function of the distance between the different points of the
multilayer system, the deterministic model defined by Eqs. (22) and (23) yields a reasonable
approximation with a significant dispersion with respect to all experimental points. Then, a
stochastic approach is proposed in order to increase the robustness of the algebraic model in its
capability to represent all the experimental data. A detailed analysis has been carried out in order
to define the parameters of the basic algebraic model which have to be modelled by a random
variable. The retained model is the basic algebraic model in which zR and jzj are modelled by the
mean values estimated in Sections 5.1 and 5.3, LR and LI are modelled by

%
LR and

%
LI estimated in

Section 5.5 and where lR; lI and fI are modelled by mutually independent random variables LR;
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LI and FI ; respectively, independent of frequency o: By construction, the mean values of these
three random variables are

%
lR;

%
lI and f

I
estimated in Sections 5.4 and 5.5.

6.1. Estimating the probability distributions of the random parameters

The variables LR and LI are positive-valued random variables and FI is a random variable with
values in ½0; 2p	: The maximum entropy principle is used to construct the probability distribution
[17] for each random variable LR; LI or FI : Below, Lr denotes either LR or LI : It is assumed that
the probability distribution of the random variable Lr is defined by a probability density
function pLr

ðlÞ with respect to dl: For random variable Lr; the available information consists
of the mean value mr

1 ¼ EfLrg and of the second order moment mr
2 ¼ EfL2rg: Consequently,

the maximum entropy principle consists in maximizing entropy S defined by SðpLr
ðlÞÞ ¼

�
R
Rþ pLr

ðlÞ lnðpLr
ðlÞÞ dl with the constraints defined by the available information and

written as Z
Rþ

ll pLr
ðlÞ dl ¼ mr

l ; for l ¼ 0; 1; 2: ð32Þ

One then obtains

pLr
ðlÞ ¼ 1RþðlÞ Cr

0 e
�mr

1
l�mr

2
l2 ; ð33Þ

in which Cr
0 > 0; m

r
1 and mr

2 > 0 have to be chosen such that the constraints be satisfied. One has
mr
0 ¼ 1: The moment mr

1 ¼
%
lr has been calculated in Section 5. The second order moment mr

2 is
estimated using the experimental data basis and yields mR

2 ¼ 0:006994 (resp. mI
2 ¼ 0:005107).

Consequently, the standard deviation sLr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr
2 � %

l2r
p

is sLR
¼ 0:0324 (resp. sLI

¼ 0:0274). One
then has to solve the three algebraic equations defined by the three constraints defined by Eq. (32)
in which mr

0; mr
1 and mr

2 are given and where the unknowns are Cr
0 > 0; m

r
1 and mr

2 > 0: This
calculation yields

CR
0 ¼ 0:926 > 0; mR

1 ¼ �67:377; mR
2 ¼ 442:809 > 0;

CI
0 ¼ 1:012 > 0; mI

1 ¼ �81:157; mI
2 ¼ 622:792 > 0: ð34Þ

Using the same methodology for random variable FI ; the probability density function pFI
ðfÞ is

written as

pFI
ðfÞ ¼ 1½0;2p	ðfÞ C

f
0 e

�mf
1
f�mf

2
f2 ; ð35Þ

in which C
f
0 ; m

f
1 and mf2 have to be such thatZ 2p

0

fl pFI
ðfÞ df ¼ m

f
l ; l ¼ 0; 1; 2; ð36Þ

and where m
f
0 ¼ 1;mf

1 ¼ f
I
has been calculated in Section 5 and where the second order moment

m
f
2 is estimated with the experimental data basis and yields m

f
2 ¼ 1:5085: Consequently, the

standard deviation sLf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

f
2 � f2

I

q
is 0.3745 rad. The calculation of C

f
0 ; m

f
1 and mf2 yields

C
f
0 ¼ 10:776; mf1 ¼ 11:124; mf2 ¼ �1:623: ð37Þ
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6.2. Construction of the probabilistic algebraic model for rRðZÞ

From the basic algebraic model and from the hypotheses introduced in Section 4.2, the real-
valued random variable rRðZÞ is defined by

rRðZÞ ¼ e
�Z=

%
LR cosð2pZ=LRÞ: ð38Þ

For a fixed value Z of the distance, the confidence region of rRðZÞ; corresponding to a given
probability level Pc; is defined by the upper envelope rþRðZÞ and the lower envelope r

�
RðZÞ such that

Pfr�RðZÞorRðZÞorþRðZÞgXPc: ð39Þ

The mean value and the second order moment of the random variable rRðZÞ are such that

EfrRðZÞ
ag ¼

Z þN

0

pLR
ðlÞ fe�Z=

%
LR cosð2pZ=lÞga dl; a ¼ 1; 2; ð40Þ

and the variance is

s2rR
ðZÞ ¼ EfrRðZÞ

2g � ðEfrRðZÞgÞ
2: ð41Þ

The upper envelope is constructed by using Tchebychev’s inequality which, for a real-valued
centered random variable X ; is written as

PðjX jXeÞpEfjX j2g=e2: ð42Þ

One then has

PfjrRðZÞ � EfrRðZÞgjXeRðZÞgpEfjrRðZÞ � EfrRðZÞgj
2g=e2RðZÞ: ð43Þ

Using Eq. (41) yields

PfjrRðZÞ � EfrRðZÞgjXeRðZÞgps2rR
ðZÞ=e2RðZÞ; ð44Þ

and consequently,

PfjrRðZÞ � EfrRðZÞgjoeRðZÞgXPc; ð45Þ

in which Pc ¼ 1� s2rR
ðZÞ=e2RðZÞ: The probability level Pc being fixed, one obtains eRðZÞ ¼

srR
ðZÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc

p
: Eq. (45) is rewritten as

Pf�eRðZÞ þ EfrRðZÞgorRðZÞoeRðZÞ þ EfrRðZÞggXPc: ð46Þ

Comparing Eq. (46) with Eq. (39) yields

rþRðZÞ ¼ EfrRðZÞg þ eRðZÞ; r�RðZÞ ¼ EfrRðZÞg � eRðZÞ: ð47Þ

The confidence region corresponding to a probability level equal to 0.95 is shown in Fig. 18. In
this figure, each vertical solid line consists of a set of dot symbols corresponding to the
experimental values for a same distance Z: It should be noted that almost all the significant
experimental data are inside the confidence region (95%).
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6.3. Construction of the probabilistic algebraic model for rI ðZÞ

Using the approach defined in Section 6.2, the real-valued random variable rI ðZÞ is defined by

rI ðZÞ ¼ e
�Z=

%
LI cosð2pZ=LI þ FI Þ; ð48Þ
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which depends on the random variables LI and FI : The confidence region of rI ðZÞ is defined by

Pðr�I ðZÞorI ðZÞorþI ðZÞÞXPc; ð49Þ

in which the upper envelope is defined by rþI ðZÞ ¼ EfrI ðZÞg þ eI ðZÞ and the lower envelope is
defined by r�I ðZÞ ¼ EfrI ðZÞg � eI ðZÞ with eI ðZÞ ¼ srI

ðZÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pc

p
: The mean value and the second

order moment of the random variable rI ðZÞ are defined by

EfrI ðZÞ
ag ¼

Z þN

0

Z 2p

0

pLI
ðlÞ pFI

ðfÞ fe�Z=
%
LI cosð2pZ=lþ fÞga dl df; a ¼ 1; 2: ð50Þ

The variance is such that s2rI
ðZÞ ¼ EfrI ðZÞ

2g � ðEfrI ðZÞgÞ
2: The confidence region corresponding

to a probability level equal to 0.95 is shown in Fig. 19. In this figure, each vertical solid line
consists of a set of dot symbols corresponding to the experimental values for a same distance Z:
Similarly for the probabilistic model rRðZÞ; it can be shown that almost all the significant
experimental data are inside the confidence region (95%).

7. Conclusions

Soundproofing schemes including porous materials are difficult to model. The objective of
Part 1 of this paper is to construct an equivalent acoustic impedance for a multilayer system
consisting of a three-dimensional porous medium inserted between two thin plates. The
construction of a probabilistic algebraic model is based on the introduction of an adapted
algebraic model and on the use of an experimental data basis specifically carried out for this
research. The probabilistic algebraic model consists of the mean algebraic model and of the
probability distribution of the random model parameters. A minimum number of parameters in
the model is used and the parameters are fitted using the experimental data basis. The probability
distributions are modelled using the entropy maximum principle. This work has been performed
in order to construct an algebraic representation which synthesizes a large experimental data basis
over the medium- and high-frequency ranges, using a small number of parameters for the
algebraic model. The comparison between this model and the experiments is good and
consequently, this model can be considered as a synthesis of this experimental data basis and will
be reused for other researches.
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Appendix A. Geometry and materials properties of the experimental multilayer system

The multilayer system consists of a porous medium and of two plates in alumini for which their
thicknesses are hP1 ¼ 1 mm and hP2 ¼ 3 mm: Table 1 summarizes the plate parameters. The
porous medium is a polyurethane foam saturated in air whose thickness H is 100 mm: Table 2
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summarizes the air parameters. The parameters of the porous medium, introduced in the Biot
theory applied in the acoustic problems and characterizing the solid phase and the fluid–solid
coupling, have been measured [12,18]. A summary of these results is presented in Table 3.
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